
The security of connected devices and systems should be a primary
consideration for any product manufacturer or designer, ensuring their
products and end-users are safe from hackers and other online threats.

Connected. Conformant. Compliant

6 key considerations for
Device Cybersecurity compliance

Not only is this a new requirement, but it’s also one that
carries significant weight as well. Both PSTI and RED
threaten severe penalties for any manufacturer that
fails to protect their equipment.

The EU Cyber Resilience Act will broaden the scope
even further—bringing ethernet-only devices into play
—and will carry fines of up to €15m or 2.5% of
worldwide annual turnover.

Against this backdrop, manufacturers find themselves
needing to guarantee the security of their devices.
Across storage, communications, authentication, and
more, they need to show they’ve done everything in
their power to eliminate vulnerabilities and defend
against threats.

For some, the capabilities to do that will already be in
place. For many more, though, this will represent
unfamiliar — if not entirely new — territory.

This resource is a guide to 6 key aspects of device
cybersecurity as identified by our expert team. We’ll
talk you through each aspect individually, the
associated risks, and how to mitigate these risks
through best practices in system design and
development.

“Consult Red is an expert cybersecurity partner,
able to guide you through your entire cybersecurity journey –
ensuring product compliance and your brand reputation.”

ATMs. Baby monitors. Thermostats, vending
machines, and more. The number of internet-
connected devices has skyrocketed in recent years,
a trend that shows no signs of slowing down.
By 2030, there could be anywhere between 31.8
billion [Transforma Insights] and 125 billion [IHS
Markit] connected devices, according to some.

There’s good reason to bring those objects online, too.
Connecting them to the network opens up
opportunities that range from greater personal
convenience to data-driven industrial optimisation.
Naturally, though, there’s an inherent risk that comes
with connectivity.

In December 2022 alone, more than 10.54 million
cyberattacks were launched against mobile and
“Internet of Things” (IoT) devices [Statista]. From
botnets and ransomware to data theft and AI-
enhanced attacks, the objects around us are now
under near-constant assault.

Unsurprisingly, governments and other relevant
authorities have begun to take note. The UK’s
Product Security and Telecommunications
Infrastructure (PSTI) Act, in addition to the EU’s
Radio Equipment Directive (RED), make it a legal
requirement for connected devices to comply with
cybersecurity standards.

6 key considerations for device cybersecurity
What can go wrong if they are not addressed
How cybersecurity threats can be mitigated as part of good device design and development

An introduction to device cybersecurity

In this guide you will learn:

02

6 key considerations for Device Cybersecurity

 consult.red

https://transformainsights.com/research/forecast/highlights
https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://cdn.ihs.com/www/pdf/IoT_ebook.pdf
https://www.statista.com/statistics/1322216/worldwide-internet-of-things-attacks/

Any device will have at least some information which must be kept securely, that is,
in a way which ensures both confidentiality and integrity:

Confidentiality – preventing unauthorised access to the data

Integrity – preventing unauthorised modification of the data

Typically, there are two types of secure storage in an embedded device:

Low volume, very high security: specialist hardware storage (such as within a Trusted Platform Module,
Hardware Security Module, Secure Enclave, Trusted Execution Environment or other specialist secure storage
within a SoC). This storage is very resistant to unauthorised access (for example, using hardware measures to
protect against physical tampering) but cannot store large volumes of data. Typically, this storage would be
used to store cryptographic keys, which could, in turn, be used to protect encrypted drives for high-volume
storage, secure communication, secure software update/secure boot, etc.

High volume, general-purpose security: commodity storage such as flash memory, disk drives, SD cards,
etc., which uses an encryption mechanism to secure the data stored on the drive. Such storage can store large
volumes of data (limited only by the size of the storage device) and can be considered fully secure, provided
that a suitable encryption scheme has been used and that the keys used for encryption have been secured and
managed appropriately.

The EN 18031 standards require devices to use secure storage mechanisms for storing sensitive data, although
the specific nature of the secure storage is not mandated by the standard.

Secure storage is the foundation of many other security features of a device. Therefore, if the secure storage
mechanism is absent or not properly implemented, the device is open to a range of security attacks. This could
include exfiltrating user data; gaining access to keys and certificates used for secure communication, which could
allow an attacker to spoof the device or intercept communication; or modifying the data stored on the device, which
could include software and configuration files, allowing an attacker to install malicious code on the device.

Some examples of real-world attacks that revolve around a lack of proper secure storage include:

Secure Storage

03

6 key considerations for Device Cybersecurity

What is secure storage for IoT or embedded devices?

What can go wrong if you don’t get secure storage right?

 consult.red

Tesla Model S key fob attack (2018) - Researchers found that the cryptographic keys used to
secure the Tesla Model S’s key fob used a weak encryption algorithm and were stored
insecurely, allowing attackers to clone the key fob and unlock the vehicle. [wired.com]

Foscam security camera credential vulnerability (2017) - Vulnerabilities in Foscam
security cameras were discovered whereby sensitive information, such as user
credentials and Wi-Fi passwords, were stored in plain text in the camera’s filesystem. In
addition, hard-coded credentials were present, which could not be disabled. The lack of
secure storage and proper key management gave attackers complete control of all
cameras from the same product range, including the ability to install modified software
on the device. [thehackernews.com]

ZigBee Light Link vulnerability (Philips Hue) (2016) - Philips Hue smart
bulbs, which use the ZigBee Light Link protocol, were found to store encryption
keys insecurely. Researchers were able to use an attack to recover the Philips
Hue OTA update verification and encryption keys. With those keys, they could
create a malicious software update and load it to a Philips Hue light, which, in
turn, could be used to attack other devices on the network. [iacr.org]

1

https://www.wired.com/story/hackers-steal-tesla-model-s-seconds-key-fob
https://thehackernews.com/2017/06/online-ip-camera-hacking.html
https://eprint.iacr.org/2016/1047.pdf

Designing an effective, secure storage implementation for an embedded device must start at the very beginning of
the design phase since good security relies on having appropriate security support built into the hardware (such as
a trusted platform module, secure element or hardware security module to store cryptographic keys and other
highly sensitive data).

Without some amount of hardware security capability, there is the possibility that a device is vulnerable to physical
attack to obtain cryptographic keys and certificates, which could be used to view or modify data on the device or
spoof the device when communicating with cloud or backend services.

The hardware security functionality must then be used appropriately by software in order to implement secure
storage on the device’s main filesystems. Things to consider include:

Selecting strong, modern encryption algorithms and appropriate modes of operation to encrypt data at rest.

Using cryptographic hashing or authenticated encryption to provide integrity protection as well as
confidentiality, preventing unauthorised modification of data.

Assessing whether, for specific data items, it is appropriate to rely on the security provided by the encrypted
filesystem or whether per-file encryption is required for more sensitive data.

Implementing mechanisms to control and manage per-device keys, whether initial provisioning during
manufacturing or key revocation and replacement after device deployment.

Using appropriate authentication and access control mechanisms to limit which users or processes can
access data from the secure storage.

Implementing a secure software update process to ensure that secure storage mechanisms cannot be
overridden by an attacker installing modified firmware on the device.

How Consult Red can help with secure storage

04

6 key considerations for Device Cybersecurity

 consult.red

How do I design a good secure storage implementation for my device?

Some examples of applications of secure storage within our
experience include:

Secure management of video content using Digital Rights
Management – and secure storage of DRM keys

Secure storage of keys and certificates used to authenticate a
device with headend and cloud-based services

Secure storage and management of wireless network
credentials in connected devices and access points

Secure storage of logs and telemetry data, including those
containing business-sensitive and personally identifiable data

Hardware audit of security mechanisms provided by the chip
vendor to ascertain effectiveness and identify potential
weaknesses.

Any internet-connected embedded device needs a mechanism for the device manufacturer
(or operator) to issue software updates (sometimes called firmware updates) to the device
after it has been deployed into the field. There are two crucial aspects to this:

A software update mechanism is necessary to secure the device against newly discovered vulnerabilities.

The software update mechanism must itself be secure. Otherwise, malicious actors could exploit the software
update mechanism for nefarious purposes.

 A secure software update process will have the following features:

The device manufacturer/operator can receive telemetry showing which software version is running on which
device in the field.

The manufacturer/operator can remotely initiate software updates targeted at one device or a class of devices.

The device can verify that the software update is genuine and has not been tampered with. It is not possible for
a non-authorised entity to get a software update installed on the device.

The device has a fallback mechanism. Should a software update fail for some reason, the device will still be
able to function.

The device should have an anti-rollback mechanism so that once a new software image has been booted
successfully, it cannot be forced to run older software.

The EN 18031 standards require devices to have at least one mechanism for securely updating each part of the
device’s software. In the UK, the Product Security and Telecommunications Infrastructure Regulations 2023 require
that manufacturers publish information about the duration of the support period during which software updates will be
available at the time of marketing the product. In some contexts, a secure software update may be referred to as an
Over-The-Air (OTA) update, which originates from devices such as set-top boxes which receive updates via an “over
the air” broadcast mechanism such as terrestrial or satellite TV signals. It is now much more common for updates to
be delivered over the internet, although the terminology of OTA update may still be used.

If a device cannot receive software updates promptly, it can be left vulnerable to exploits discovered after it has
been deployed to the field. Malicious actors can use such exploits for various nefarious purposes, including:

Direct denial-of-service (DoS) attacks: the attacker can stop the device from functioning correctly or at all.

Distributed denial-of-service (DDoS) attacks: a compromised device can be used as part of a botnet to
orchestrate a DDoS attack on other targets on the internet.

Ransomware attacks: an attacker could attempt to hold the device or the data it contains hostage in an
attempt to gain money from the victim.

Network entry point: once an attacker has control of a compromised device within the user’s local network,
they can use it to attempt to mount attacks on other devices on the user’s network.

Data exfiltration: an attacker could use the compromised device to steal sensitive information from the user or
from other devices on their network.

Spying: an attacker could use a compromised device to obtain audio or video footage from a device which
contains a microphone or camera.

An attacker who is able to install a compromised software image on a device could also use such an image to
achieve any of the above forms of attack. An example of a series of real-world attacks that involve a lack of a
proper secure software update mechanism is the Mirai Botnet. Starting in 2016, the Mirai malware has been used
to create a botnet, which has been used in a series of large distributed denial-of-service attacks. It has been very
successful because it targets low-cost IoT devices, which often use weak security credentials and do not have an
effective software update mechanism. These devices remain vulnerable to the Mirai malware several years after its
first discovery.

Secure Software Update

05

6 key considerations for Device Cybersecurity

What is secure software update for IoT or embedded devices?

What can go wrong if you don’t get secure software update right?

 consult.red

2

Designing an effective, secure software update mechanism requires full knowledge of the device’s hardware
and software stack, as you will need to consider mechanisms to update the bootloader, firmware, runtime
images and applications.

Simpler devices may use a monolithic runtime image that updates all application software in one go. In contrast,
more complex devices often use package- or container-based solutions to update applications independently of
the core runtime image. Each approach has advantages and disadvantages, and you should consider the use
cases for your device before deciding on the approach that is right for you.

Where possible, you should leverage any secure update mechanism or infrastructure provided by your device’s
platform (e.g. Android) in preference to rolling your own solution, but not all devices will use a platform that has
such a mechanism built in.

Parts of the software update mechanism are likely to interact with the device’s bootloader, which can use keys
stored in the device’s secure storage to verify the signature of software images at boot time, prior to executing
the code. The bootloader will also likely manage any fallback mechanism, such as an “A/B” partition system.
The device will also require middleware functionality to communicate with the remote update service, identify
when images are available, and schedule these for installation at a convenient time. Often, updates may have a
priority status set, depending on the severity of the security issues the update might fix, so that the most urgent
patches can be installed as soon as possible, while less urgent fixes may be applied at a more convenient time
for the user.

Where the update mechanism permits non-sequential updates, careful testing is required to ensure the device
functions correctly, even if updates are installed in a different order.

The software update mechanism's design requires careful thinking to ensure that the system works as intended
when deployed at scale. Many issues can be encountered when deploying software updates to large numbers
of devices in the field, which may not have been spotted in even the best test lab. One typical example of what
can go wrong is as follows: devices normally reboot as part of the software update process, and devices
typically connect to several cloud and backend services just after they reboot. Therefore, if an operator
inadvertently schedules too many devices to install an update at the same moment, they could end up
overloading their backend systems by having too many devices rebooting and initiating connections to the
backend at the same time.

How Consult Red can help with secure software update

06

6 key considerations for Device Cybersecurity

 consult.red

How do I design a good secure software update implementation for my device?

We have worked with various aspects of secure update for deployments
with up to 20 million devices deployed in the field, including:

Software update mechanisms for Android, Linux, RTOS and bare-
metal-based devices.

Bootloader configuration, including A/B partition systems and
cryptographic signature verification of downloaded images

Device middleware to manage software updates

Backend and cloud services to schedule and orchestrate software
updates on a fleet of devices

Telemetry reporting and remote diagnostics for software update
and boot failures

Any IoT device, by definition, needs to communicate across the internet, generally to some
form of cloud backend services which control the device and provide it with useful functionality.
Information that is communicated in this way could include:

Commands from the backend to the device, instructing it to do something (for example, telling an IoT door
lock to open a door)

State information sent from the device to the backend, which is used by the backend to trigger other actions
(for example, trigger a heating system when a thermostat tells the backend that a room is cold)

Data from the backend to the device, for example, a software update image or a configuration file

Data sent from the device to the backend, as part of the device’s functionality (for example, video streamed
from a security camera to a cloud storage system)

Other forms of embedded device also require secure communication channels, for example, wireless remote car
keys. Most devices communicate through channels such as the internet, which are not inherently secure, so the
device architecture must allow for a secure channel to be layered on top of the communication mechanism.
Considering an IoT or embedded device, the following properties are the most significant in making the
communication system secure:

Confidentiality – it should not be possible for an unauthorised party to access the data being communicated

Integrity - it should not be possible for the data to be modified in transit

Authenticity – it should be possible to know with certainty that a message originated from a trusted source –
i.e. the device must know that it is communicating with the genuine backend, and vice versa

No replay – it must not be possible for an attacker who records a genuine message and replays it later to trick
the device into executing an action.

Attacks on devices that fail to secure their communication channels adequately can lead to:

Attackers gaining control of a device and misusing its functionality (such as
unlocking a house secured by an IoT door lock)

Attackers gaining access to data transmitted by a device (for example, CCTV footage
from a camera)

Attackers gaining control of a device to use it for some other nefarious purpose (for
example, as part of a botnet)

Attackers tricking the backend into performing some action (for example, turning on
someone’s lights when they didn’t want it)

Some examples of real-world attacks that revolve around a lack of proper secure
communication mechanisms include:

TP-Link smart bulb hack (2023) - flaws in secure communication meant that authenticity
and confidentiality were not guaranteed on the communication channel between the
device and the control app. This allowed an attacker to gain control of all devices on the
user’s account and obtain the user’s Wi-Fi password. [arxiv.org]

Ring doorbell hack (2019) - Ring doorbells communicated with an app using an insecure
communication channel. Attackers could intercept video data from the doorbell camera
and potentially modify footage. [bitdefender.com]

Secure Communication

07

6 key considerations for Device Cybersecurity

What is secure communication when applied to an IoT or embedded device?

What can go wrong if you don’t get secure communication right?

 consult.red

3

http://arxiv.org/pdf/2308.09019
https://www.bitdefender.com/en-gb/blog/hotforsecurity/bitdefender-finds-ring-doorbell-vulnerability-exposes-users-wi-fi-password/

EN 18031 requires that devices use appropriate secure communication mechanisms and that these
mechanisms must protect the confidentiality, integrity and authenticity of the communications, as well as
protect against replay attacks. However, the standard does not detail the specific measures that should be
used to achieve this since the appropriate mechanisms depend on the nature of the device and the constraints
placed on the environment in which it operates.

Designing a secure communication mechanism between a device and a backend service sounds simple at first
– with technologies such as HTTPS being commonplace.

However, while “just use HTTPS” can solve many problems around confidentiality, integrity and replay attacks,
the issue of authenticity – that the device “knows” it is communicating to the genuine backend – and vice versa
– is more challenging to achieve. HTTPS, as it is used on millions of websites, relies on TLS using PKI
certificates and chains of trust to allow a web browser to confirm to a user that when they visit
https://www.amazon.com they are communicating with the genuine Amazon.com Inc, and not an imposter or a
“man in the middle” attack. But HTTPS does not help Amazon to know who their customer is – they must layer
a separate user authentication and login process into their website to provide that.

A solution is possible using TLS mutual authentication, but this requires the device to be issued with a unique
TLS certificate that must be stored securely on the device. There are logistical challenges to overcome to
ensure that devices are securely provisioned with device certificates – either during manufacture in the factory
or over some provisioning mechanism in the field. Of course, steps must then be taken to ensure that the
provisioning mechanism is itself secure...

Other communications mechanisms, either over the internet using protocols other than TLS/HTTPS or over
channels such as Bluetooth or Zigbee, face similar problems. While standard mechanisms are typically
available to allow encrypted communication and provide authentication, their security relies on using keys,
which again depends on a secure provisioning mechanism.

Another consideration is to ensure that cryptographic methods used to secure the communication channel used
by a device are effective and do not rely on outdated and potentially vulnerable cryptographic schemes. EN
18031 has a general requirement that devices should use best practices for cryptography; while the standard is
not prescriptive, this would exclude the use of outdated cryptographic algorithms such as 3-DES, MD5, SHA-1,
AES with short key lengths (AES-128), and ineffective block cypher modes of operation such as ECB mode.

How Consult Red can help with secure communication

08

6 key considerations for Device Cybersecurity

 consult.red

How do I design a good secure communication system for my device?

We have experience with various aspects of secure device
communication, including:

Design and implementation of secure, standards-based
device-to-backend and device-to-device communication
protocols

Secure communication implementations on ultra-low-cost,
resource-constrained devices (which might not have the
resources necessary to support traditional public key-based
algorithms)

Device provisioning and key/certificate management

Device security review

In embedded devices, logging is useful for various purposes: verifying that the device
is operating as intended, finding and fixing bugs, monitoring how users use the device,
and measuring device performance. But is logging really a security measure?

Think about a bricks-and-mortar store. There are several security measures that the store is likely to have in place
to actively prevent shoplifting: enforcing a one-way system that only allows exit at the cash registers, locking away
the most valuable items behind the counter, and so on. But the store is likely to have a CCTV system installed as
well. On the face of it, the CCTV system does nothing to physically prevent shoplifting – but it does provide a very
good mechanism to provide evidence of what happened after an incident has occurred. By reviewing CCTV footage
after a theft, the store management may be able to identify a flaw in their other security measures, which they can
address to reduce the chances of further thefts in future.

Logging in an embedded device is similar. The logs don’t themselves prevent a security incident from occurring, but
they can help developers conduct a post-mortem of what went wrong after an incident, which means they can take
steps to prevent it from happening again.

EN 18031-2 considers logging important to protect personal data that may be stored in a device, and EN 18031-3
has similar requirements aimed at protecting financial data. By logging activities such as the addition or removal of
users and permitted and denied access attempts, an investigator can trace a pattern of user access that may have
occurred during an attack.

Because logging does not directly protect against security
incidents, failure to have an effective logging system is
not as devastating as a lack of other security measures.
However, a lack of proper logging could prevent
engineers from identifying security vulnerabilities in their
device that may have been exploited by attackers, which
could potentially put their users at increased risk by
extending the amount of time an exploitable vulnerability
is present in a device in the field.

The same is true for issues outside of the security realm
– a lack of effective logging could result in a buggier and
less reliable product, a degraded user experience, and,
ultimately, damage to a manufacturer’s brand.

It is also crucial that any logging system which is
implemented is done securely. Carelessly designed logs
can lead to information leaking, which could include
sensitive personal data or security-related information
such as passwords. See example - [cve.org]

What can go wrong if you don’t get logging right?

Logging

09

6 key considerations for Device Cybersecurity

Why is logging important for security in an IoT or embedded device?

 consult.red

44

https://www.cve.org/CVERecord?id=CVE-2018-1999036

10

6 key considerations for Device Cybersecurity

 consult.red

To design a good logging system, you must understand why and what before thinking about how.

Why

Why do you need logs? From a security perspective, think about how having logs will help make your device
secure; for example, “having logs of user accesses will help us to identify any irregular login attempts”.

What

What information is needed to design a system which fulfils the purposes you have set out? For example, if you
need a log of user accesses, then you probably should log the date, time, user ID, and whether the login was
successful, associated with each login attempt.

What information don’t you need? For example, there is no need to log the password used – and doing so could
lead to information leakage.

How long does this information need to be kept?

How

How will you store the logs on your device? Are there constraints, for example, the amount of storage space
that can be used? A resource-constrained device may need to use a very compact format, while other devices
may focus on a format that allows logs to be read and searched efficiently.

How will the logs be used? This might inform the storage format or other considerations, such as whether and
how frequently logs are uploaded to a backend or cloud service. If you are using a SaaS logging service, you
may wish to design your logging system around your vendor’s libraries and APIs – or you may want to keep
your device more vendor-agnostic.

How will the logs be gathered? How will logging be hooked into your existing code and any library components
you use?

How will the logs be kept secure?

Will you require different levels of logging for different deployments (e.g. debug level logging for use during
development or in beta-test scenarios?)

How much will it cost? Logging has the potential to generate enormous volumes of data. While cloud storage
and SaaS logging tools can appear cheap initially, the costs can soon mount up, especially if you have many
devices in the field. If you rely on a vendor’s proprietary APIs to capture log data, you can also face significant
costs should you wish to switch to a different vendor in the future.

How do I design a suitable logging system for my device?

How Consult Red can help with Logging

Some examples of applications of secure storage within our experience include:

Designing compact log storage formats for resource-constrained devices

Use of SaaS logging tools such as New Relic

High throughput, low latency logging for monitoring system performance

Log analysis tools and techniques

Access control and authentication are two related areas of functionality which are essential to secure any device.

Authentication is about making sure that an entity really is who they claim to be

Access control is about making sure that entities can only perform the actions they are permitted to perform

The two mechanisms go together to secure a system: effective user authentication is a prerequisite to an effective
access control system.

Some examples of requirements for effective access control systems could include:

An IoT thermostat must only be able to be controlled by the residents of the home in which it is installed.

The video stream from a smart CCTV camera must only be visible by the owner of the CCTV system.

A Wi-Fi router must allow one set of users to access the main Wi-Fi network, a different set of users to only
access the Guest Wi-Fi network, and only the administrator to change the Wi-Fi settings on the device.

EN 18031 is not prescriptive on the access control model that should be used, but it requires that some form of
access control mechanism is in place when it would be required to protect the security of the device, and that the
manufacturer verifies that the access control mechanism is effective for its intended purpose.

Authentication mechanisms can vary. Passwords are a very common authentication mechanism but are imperfect
in many ways. In the past, it was very common for IoT devices to use factory default passwords (such as ‘0000’)
which led to many devices being vulnerable to attacks, such as those described below. EN 18031 requires that if
passwords are used, they must be either uniquely set per device or required to be configured by the user prior to
the device being connected to the internet. Very similar laws are in place in the UK (Product Security and
Telecommunications Infrastructure Act & Regulations) and California (Senate Bill 327).

EN 18031 also requires that devices are resilient against brute-force attacks on their authentication mechanisms,
such as using a time delay between consecutive login attempts, a lockout period after failed login attempts, or
multi-factor authentication systems.

Many security vulnerabilities have been caused by improper access control and user
authentication mechanisms. Some examples include:

What can go wrong if you don’t get access control and authentication right?

Access Control and Authentication

11

6 key considerations for Device Cybersecurity

What is access control and authentication in an IoT or embedded device?

 consult.red

Epson printers – in many Epson printers, in the default
configuration, no administrator password was set, allowing an
attacker to set the password and take control of the device. [nist.gov]

Security cameras – a security camera used a hardcoded root
password, allowing an attacker with one such device to obtain the
root password for any similar device. [nist.gov]

Mirai Botnet – a widespread attack which has been ongoing since
2016 has seen the Mirai malware attack a large number of different
low-cost IoT devices; a common factor being they all use default
passwords. [cloudflare.com]

5

https://nvd.nist.gov/vuln/detail/CVE-2024-47295
https://nvd.nist.gov/vuln/detail/CVE-2024-31798
https://www.cloudflare.com/en-gb/learning/ddos/glossary/mirai-botnet/

12

6 key considerations for Device Cybersecurity

 consult.red

To ensure that your IoT or embedded device has an effective access control and authentication system, you should:

Identify all interfaces that provide access to the device. This could include:

Local user interfaces, such as via a local display or TV screen
Remote user interfaces, such as a web-based administration user interface
Application-specific interfaces and APIs, which could be over a network, Bluetooth, etc.
Debugging interfaces, such as SSH or a serial interface
Interfaces which are intended to be internal to the device, but which could be physically accessible via the
hardware, such as using physical test points and vias on the PCB

For each and every interface, you should document:

Who or what should be allowed to access the device via that interface (the authorised entities)
What data or control is available via that interface
.How the authorised entities authenticate themselves over that interface, if applicable. (Note that in some cases,
physical presence in the same location as the device may be considered an appropriate level of authentication,
but this would depend on the nature of the device and its intended operating environment.)
Whether simple authentication is sufficient to provide the appropriate level of access control, or whether a more
nuanced permissions model is required
If a permissions model is required, how does that work?

You should then revisit each interface outlined in the previous step and think "what could go wrong?"

What weaknesses exist in the authentication method? For example, are you relying on a password? If so, could
an attacker try a brute-force attack to guess the password? Are credentials encrypted both in transit and at rest
on the device?
If an unauthorised entity does manage to gain access via a particular interface, what would they be able to do,
and what would the impact of this be - is this an acceptable risk? Is there a way to reduce the impact and
therefore make the risk more acceptable?
If there is a permissions model, does it restrict access sufficiently to appropriate entities? For example, if some
functions require an “administrator” or “root” level of access, is there a robust method to stop a user from gaining
unauthorised access to the root privileges (privilege escalation)?

Depending on your findings from the previous step, you may find some points which need addressing to
secure your device. Steps could include:

Eliminate the interface entirely (e.g. changing the design of a PCB to reduce the number of test points or moving
to a SoC rather than separate components connected by an accessible interface).
Reducing the circumstances in which the interface is active (e.g. disable a debugging interface in production
software builds).
Restrict the data or functionality that is available via the interface.
Add additional or more robust authentication methods on the interface (for example, using two-factor
authentication, or adding protection against brute-force attacks).
Adding additional or more fine-grained access control methods (e.g. differentiating between “administrator” and
“root” level functionality).

How do I design a good access control and authentication system for my device?

How Consult Red can help with access control and authentication

We have experience with all aspects of secure access control and authentication, including:

Secure hardware designs and selection of components to support secure use cases

Designing software architectures to support security requirements

Secure device provisioning with security keys, certificates and other authentication credentials

Security assessment and vulnerability analysis

A Denial of Service (DoS) attack is a cyber-attack in which the perpetrator aims to make a network service
unavailable to its users, typically by flooding the service with more requests or network traffic than it is able to
handle. IoT and embedded devices could be the target of a DoS attack, although this is less common in practice.

The more significant risk for an IoT device is for them to be used as part of a Distributed Denial of Service attack
(DDoS). In a DDoS attack, the embedded device is turned into the ‘attacker’, rather than the ‘attacked’. The device
is taken over and becomes part of a ‘botnet’ - thousands of compromised devices are used together to deliver a
DoS attack on a target, typically by sending so much traffic to an online service that it is unable to cope with
demand, and therefore denying genuine users access to that service.

Denial of Service attacks can be extremely damaging to the operation of the
internet. As such, EN 18031-1 requires manufacturers to help protect the internet
by building measures into relevant types of network devices that will mitigate and
help prevent DoS and DDoS attacks. These include:

Denial of Service

13

6 key considerations for Device Cybersecurity

What are Denial of Service attacks and why are they of concern in
an embedded or IoT device?

Why should device manufacturers care about Denial of Service attacks?

 consult.red

A resilience mechanism, so that a device which is targeted in a DoS
attack can detect that it is under attack, and take steps to mitigate the
impact of the attack and ensure it recovers to a known-good state once the
attack passes. This can help make DoS attacks less effective since they
only knock the device offline for the duration of the attack, and not
afterwards.

A network monitoring mechanism, so that a device such as a
router or gateway which connects other devices to the internet
can monitor the traffic it is passing and identify traffic that is
potentially part of an attack.

A traffic control mechanism, so that a device such as
a router or gateway can block traffic which is suspected
to be part of a DDoS attack originating from inside the
network from accessing the internet.

6

14

6 key considerations for Device Cybersecurity

 consult.red

The first and most straightforward step to reduce the chances of your device being affected by denial of service
attacks is to minimise the attack surface by shutting down all non-essential services and closing unneeded ports
using firewall rules. If, for example, your device’s web interface is only accessible via HTTPS on port 443, then
standard HTTP on port 80 is not needed, and by simply blocking port 80, you can reduce your susceptibility to
attacks on that port. Similarly, disabling debugging interfaces and other services that are not needed in a production
environment can reduce the number of routes for an attack on your product.

The next step is to ensure that if your device does come under attack, it can recover and, ideally, still operate
(perhaps in a degraded state) while the attack is in progress. For example, a smart home gateway device that has
an external web-based API, which comes under attack from a large number of HTTP requests on this interface in a
short space of time, could detect this spike in requests and disable the external interface. Although this would also
block any legitimate external web API requests while the attack is ongoing, the device can still operate using its
internal-facing interfaces, which is better than nothing, whereas if the external web interface was left up, the weight
of traffic could have caused the device's CPU to be overloaded. After a period (for example, 1 to 3 hours) has
passed, the device could tentatively reactivate the external web interface and either close it again if the attack is still
ongoing or reopen it and resume normal operation if the attack has passed.

For routers and other devices which bridge traffic between networks, an additional, more sophisticated network
monitoring and traffic control mechanism is needed to monitor and rate limit suspicious traffic originating from other
devices inside the network, which could form part of an outgoing DDoS attack on a device on the internet.

How do I include Denial of Service attack prevention in my device?

How Consult Red can help prevent Denial of Service attacks

When it comes to denial of service attacks, we can help with:

Analysing where your device may be vulnerable

Advising how to reduce your exposure risk

Designing and implementing mitigation and resilience mechanisms

Network monitoring and traffic control mechanisms for gateways and routers

Device cybersecurity is a critical requirement for IoT
and embedded device manufacturers. With increasing
regulatory oversight through standards like EN 18031,
compliance is essential not just to avoid legal and
financial penalties but to ensure user trust and brand
reputation.

This guide has explored six fundamental aspects of
device cybersecurity: secure storage, secure software
updates, secure communication, logging, access
control and authentication, and denial of service
prevention. Each of these components plays a vital role
in safeguarding devices from ever-evolving threats.

Neglecting cybersecurity measures carries significant
risks, ranging from data theft and operational
disruptions to enabling large-scale cyberattacks such
as botnets. Real-world examples, such as the Mirai
botnet and security vulnerabilities in devices like smart
bulbs and routers, demonstrate the importance of
proactive, robust security design.
By implementing secure architectures and adhering to
best practices, manufacturers can not only protect their
devices but also contribute to the broader security of
our connected world.

At Consult Red, we bring over two decades of
expertise in embedded devices and cybersecurity,
offering a range of advisory and compliance
services tailored to your needs.

Whether you are looking to design secure systems
from the ground up or ensure your existing systems
meet regulatory standards, our team is here to help.

Together, we can ensure your devices are not just
compliant but resilient, enabling innovation and
security to go hand in hand.

Summary

15

6 key considerations for Device Cybersecurity

 consult.red

Be confident in your device cybersecurity, with Consult Red.

Get in touch to learn more about our Device Cybersecurity services and how we can
ensure the security of your products and their users.

Connected. Conformant. Compliant

Contact us to find out more

© 2024 Consult Red Ltd. All rights reserved. Consult Red reserves the right to revise this publication and to make changes in content from time to time
without obligation on the part of Consult Red to provide notification of such revision or change. Consult Red and the Consult Red logo are registered

trademarks of Consult Red Ltd. Other trademarks and trade names may be used in this document to refer to either the entities claiming the marks or the
names of their products. Consult Red disclaims proprietary interest in the marks and names of others.

v1.0-Nov-24

