
Stream processing:
an overview of tools and cloud providers

In this paper, we explain the typical
characteristics of stream processing
solutions and outline the key capabilities
that the technologies need to provide

02

Contents

www.consult.red

03www.consult.red

Stream processing technologies are critical to organisations that need big data systems with near real-time analysis and decision-making
capabilities. In this paper, we explain the typical characteristics of stream processing solutions and outline the key capabilities that the
technologies need to provide. We describe key tools, frameworks and platforms currently available to support real-time processing
requirements and identify some of the factors to address when considering a stream processing development.

 Summary

 What is stream processing all about?

 Stream processing vs batch processing

Unlike stream processing, batch processing acts on finite, bounded data sets. Batch processes can
run when a complete data set has been received, or at defined points in time such as the end of
a day or week. This type of processing is useful for complex analytics, providing insights into
historical data, identifying trends, and generally supports reactive decision making.

Compared to batch processing stream processing is generally harder to
implement. But has the advantage that a stream processing architecture
can also be used for batch processing applications to gain additional
value from the same data. The same isn’t true the other way
round – you can’t take data collected for batch processing and
later apply stream processing to it.

SOURCE

INPUT

STREAM PROCESSING

SINK

OUTPUT

https://www.marketsandmarkets.com/Market-Reports/streaming-analytics-market-64196229.html#:~:text=%5B293%20Pages%20Report%5D%20The%20global,25.2%25%20during%20the%20forecast%20period

04www.consult.red

 What are the benefits of stream processing?

The power of stream processing is in enabling near real-time responses to events that are taking place. For instance, in fraud prevention it’s no good informing a
customer at the end of the month or week that you’ve detected a suspicious transaction. The transactions need to be processed in a stream and actionable insights
delivered as quickly as possible. Stream processing opens up the potential for unlimited business use cases, from fraud prevention to computer gaming to real-time
logistics routing. By developing a stream processing solution to meet one business case, opportunities unfold to find new ways of using the data – gaining even more
value from the investment. Enterprises can use stream processing for competitive advantage with benefits that include:

 Operational efficiencies Improved customer experiences Faster and better decision-making Support for integration and digital transformation

This is illustrated in the use cases listed in the table below.

Table 1: Typical stream processing use cases

The technologies for capturing, processing, and storing real-time data streams are advancing and maturing.
Understanding the options and choosing the best technologies for your business case is key to success with stream processing.

Industry/market Data streams Benefits

Banking, finance User activity, banking transactions
Fraud detection by detecting anomalies and
identifying suspicious patterns

Cybersecurity
Network events, user activity,
suspicious volumes of traffic from a
single IP address or user account

Identify security breaches, router attacks,
compromised accounts, potential DDOS and
ransomware attacks

Infrastructure &
applications

Network logs, user activity
Monitor system and application performance.
Detect outages and failures. Predictive analytics
for infrastructure failures

eCommerce
User activity on websites and social
media platforms, browsing history,
clicks

Targeted advertising, real-time pricing strategies,
upselling and cross-selling
Enhanced customer experience online and
in store

Healthcare
Sensor data from patient monitoring
equipment and wearables,
connected devices in homes

Fast response to changes in patient conditions
Predictive analytics for early warning of patient
deterioration
More independence for elderly and vulnerable
people who can stay in their homes

Environmental
Sensor data such as temperature,
carbon monoxide, footfall, desk and
meeting room usage, CCTV

Improved health and safety measures
and productivity in workplaces
Covid-secure practices, such as
social distancing
Intruder detection

Logistics and
transportation

Sensor data from vehicle trackers
and other devices

More efficient and responsive journey planning
Improved cold chain management
Predictive analytics for vehicle maintenance

Industry/market Data streams Benefits

Industry and
manufacturing

Sensor data from equipment and
machinery

Improved safety, security, and operational
efficiency of processes and plants

Preventative and predictive maintenance of
equipment and machinery

Emergency
services

Sensor data from vehicle trackers,
traffic and weather conditions

Faster times for emergency vehicles to reach
destinations
Better responses on the ground, such as
detecting changes in wind direction when
firefighters are tackling a fire

Smart cities Sensor data from connected devices

More efficient management of assets, resources
and services, including utilities, water supplies,
waste, community services
Traffic monitoring, congestion detection, accident
detection
Predictive analytics for early warning of asset or
service failures

Connected
vehicles

Sensor data from connected devices

Enabling autonomous vehicles
Improved safety by supporting drivers and
operators
Preventative and predictive maintenance
of vehicle parts

Sports
Sensor data from trackers, cameras
and other devices

Real-time updates to leader boards, statistics,
commentary, safety information

05

 Go Green – an example use case

The paper uses an example use case ‘Go Green’ to illustrate key points about stream processing.

A logistics company owns a fleet of vehicles for transportation. To meet sustainability requirements,
they must provide information about the carbon footprint associated with the products they
transport. With this information, the company can:

•	 Monitor emissions from the fleet to detect whether they’re likely to breach their
emissions limit

•	 Implement predictive analytics to investigate rises in emissions, which might indicate that
vehicle components need maintenance

•	 Enable their customers to use sustainability information when making purchasing decisions

The company plans to implement a stream processing application – which they’re calling Go Green
– to process real-time data from the vehicles.
To calculate the quantity of greenhouse gas emissions produced when transporting a product,
the application needs the following data for each vehicle:

•	 Waypoints on the journey

•	 Fuel level at each waypoint

•	 Weight of cargo

By calculating greenhouse gas emissions at multiple points of the journey, the application can
monitor the total emissions for the fleet, perform predictive analytics on breaching the emissions limit
and vehicle maintenance, and compute the carbon footprint for each product transported.

www.consult.red

To make these calculations, the company will equip all vehicles with the following
sensors:

•	 Fuel-level sensor to provide accurate fuel level measurements

•	 Load weight sensor on each axle to measure the weight of the load at different
points of the vehicle

•	 GNSS sensor to provide current geographic coordinates of the vehicle

The company identifies additional benefits that they can realise from the stream
processing implementation in the future:

•	 Trigger alerts if vehicles are overloaded, or the cargo is not distributed evenly in
the vehicle

•	 Use vehicle locations to manage routing and journey times in response to
events such as vehicle breakdowns, heavy traffic or road closures

•	 Detect theft of vehicles and provide vehicle location data to law enforcement
agencies

•	 Monitor the fuel economy of different drivers by recording driver data with
the journey information

•	 Detect and react to potential driving infringements in real-time

06www.consult.red

Unbounded data streams

A data stream is unbounded – there’s no recognisable beginning or end to the data. Data records are often very small, but the volume of records can be extremely high. For example, a
deployment of thousands of sensors might report readings every few seconds. Other use cases have varying data distributions, with quiet periods interspersed with peaks. For example, tracking
devices in vehicles might report in large numbers during rush hours while few might send data in the middle of the night.

Sometimes more than one task must be performed on data streams to achieve the required outputs. The nature of the tasks determines whether they can be performed in sequence (serially)
or simultaneously (in parallel).

 Go Green – data streams

When a vehicle is in operation, the sensors in the vehicle deliver a continuous flow of measurements
of fuel level, load weight and vehicle position. These data streams are unbounded as there is no
planned end for processing the data and no requirement to close a stream before processing. The
measurements from each type of sensor form separate data streams to the application. The rate
of flow of each stream will vary, with peaks of data during the day and quieter periods when few
vehicles are in use.

Real-time processing

There are two ways in which stream processing applications process data:

•	 Real-time: processing individual events as they arrive at the system

•	 Micro-batching: collecting small batches of events before processing

Real-time processing individual events can be computationally inefficient as the overhead
associated with transporting a single event in a packet or the scheduling of a task to process it can
far outweigh the benefit. Micro-batching is a compromise whereby small batches of events are
processed together to improve computational efficiency but the batch size is kept sufficiently small
so latency goals are still met.

With batch windows of around 50 milliseconds, a micro-batching system can deliver near real-time
results, but has a high resource overhead in the processing power required for managing the
batches. If higher latency is acceptable, longer batch windows can be used with lower overheads.
For use cases when it’s critical that events or changes in the current state trigger immediate actions
or alerts, real-time processing is required.

 Characteristics of stream processing

 Go Green – real-time processing

The Go Green stream processing application will use a real-time processing engine to generate
accurate carbon footprint calculations for the fleet.

Stateful processing

Sometimes individual events in a data stream can be processed independently. In other
cases, the application needs knowledge from previous events in order to process a new
event. This is referred to as stateful processing. Stateful processing brings challenges:

•	 For processing speed, states need to be held in memory

•	 States must also be written to persistent storage for failovers to work

•	 With distributed systems, states need to be managed so that they
don’t have to be duplicated across nodes

The Go Green stream processing application will use a real-time processing
engine to generate accurate carbon footprint calculations for the fleet.

 Go Green – scalability

Over time, the logistics company increases its vehicle fleet. If the application runs on a single computer, it will eventually become limited by the available compute power
and amount of memory required to hold the state information for all the vehicles. A more flexible approach is to use horizontal scaling and distribute the processing
across multiple compute nodes.

The Go Green application uses stateful processing, which means partitions are needed to avoid duplicating states across the nodes. Each vehicle is assigned to one
partition, ensuring that all events for the vehicle are processed in one partition on one node.

07www.consult.red

 Go Green – stateful processing

The Go Green application needs to use stateful processing for two reasons:

•	 To calculate the fuel consumption, it needs to know the previous fuel level as well as the current level

•	 All the waypoints for each segment of a journey must be processed together and not distributed to different nodes

Scalability

As data volumes grow, the system processing resources need to increase to handle the load. Scalability is the ability of the stream processing system to adapt to
changing data volumes. There are two ways of scaling stream processing systems:

•	 Vertical scaling (or scaling up) means increasing the size and power of the computer. This can include any compute resources, such as size and speed of disk,
memory, CPUs, CPU cores etc. Eventually, the limit of compute resources will be reached or the costs will become unacceptable, and no further vertical scaling
will be possible.

•	 Horizontal scaling (or scaling out) means adding more computer nodes to the system and distributing the workload among the nodes.

The choice of vertical or horizontal scaling depends upon the use case. Horizontal scaling provides the capability and flexibility to handle ever-increasing data flows.
However, it requires careful management if stateful processing is used. States are held in memory for speed of processing but duplicating states across multiple nodes
creates overheads and requires more resources. To avoid duplicating states, a mechanism such as partitioning can be used. Partitions are created and assigned to
different compute nodes . Events are assigned to a partition based on a partition key logic to ensure that they are processed in the correct partition. Partitioning ensures
that all the events requiring access to a particular state are processed by the same compute node. This minimises the need to duplicate state between compute nodes
and enables the workload to be evenly distributed across the nodes.

Various stream processing tools, frameworks and libraries exist that can significantly expedite the development of stream processing systems, however, they offer a range
of capabilities. Some of the key features are outlined below.

Data enrichment

A raw data stream may not be enough on its own to produce the required outputs. Instead, the data must be enriched with other sources of information. These might
belong to the enterprise, such as details of customers, or be acquired from external sources, such as weather and traffic data.

One challenge of enriching data streams is the delay this can add to processing time. To minimise delays, optimization techniques often supported:

•	 Asynchronous I/O – the processor handles requests and responses concurrently, thereby reducing the overall processing time

•	 Caching – frequently used data can be stored in cache to reduce the read access time

•	 Distributed joins – data from an external source can be transformed into another stream before joining with the main data stream to reduce processing time

 Go Green – data enrichment

The logistics company wants to enrich the vehicle location data with map matching. Snapping the path taken by a vehicle to the road infrastructure held by a mapping tool
provides more accurate information about vehicle location and journey details. To implement map matching, the Go Green application can use an external service such as
the HERE Maps API or GoogleMaps. For optimised speed, the application uses asynchronous I/O to process events while waiting for a response from the external API.

Data enrichment can also be used to add more value to the application:

•	 With information about the maximum weight load for the vehicles, the application can raise alerts about overloading. As this type of data is relatively static,
it can be held in cache.

•	 To analyse the fuel economy of the drivers, the application needs to maintain the current assignment between driver and vehicle. This can be done in two ways:

•	 Enrich the fuel data stream with driver assignment data

•	 Build a new data stream of driver assignments and join it with the fuel stream

08www.consult.red

 Capabilities

 Go Green – time windows

As route matching algorithms gain in accuracy with the increasing numbers of
waypoints, the application can use time windows to gather waypoints. If there’s a requirement to use
map matching on the whole route of vehicles, session windows
could be used to combine a series of waypoints in windows separated by periods of
time when the vehicle is not moving.

Checkpointing

Checkpointing is a fault tolerance mechanism that handles system failures and restarts.
It requires snapshots of the data stream metadata to be saved to persistent storage to enable
the system to recreate the correct state if it needs to recover from failure. Fault tolerance becomes
harder to achieve with the stateful calculations. Fault tolerance becomes harder to achieve with
the stateful calculations as the system must have a means to recover the state values that were
being held in memory when the node failed.

Alternatives to checkpointing include:

•	 Recreating the state from a point within the data stream. In some cases, data
streams can be compacted, with the latest state or output used if the application
needs to restart.

•	 Continue without recreating the state – in some cases, it’s acceptable to
create the state using new events.

 The mechanism to use depends on the use case.

•	 Event received – the time the event was delivered. If the source doesn’t have a
clock or provides inaccurate timestamps, the event received timestamp must be
used for ordering events.

•	 Event processing – the time that the event was processed. This timestamp might be
relevant for the computation or to determine that further computation is not required,
for example, if the event has expired. It also shows how long it took before the event was
processed, which may be a useful input to analytics and performance measurements.

09www.consult.red

Time windows

Windowing is an approach that breaks an unbounded data stream into segments for processing.
Windows are a view on a stream, with the events in the window kept in memory and available for
fast processing. Different types of windows may be supported:

•	 Tumbling windows have a fixed size and don’t overlap or have gaps. An example of
tumbling windows is for measuring audience figures in 5-minute windows.

•	 Hopping windows have a fixed size but can overlap. Events can be assigned to more than
one window. Hopping windows can be used for measuring trends in real time, for example,
a 30-minute average of a channel audience measured every 5 minutes.

•	 Sliding windows have a fixed size and a sliding interval that determines when a new
window is created. Events can be assigned to more than one window. Sliding windows are
like hopping windows but they slide in real time. For example, an event could be triggered
if 5 unsuccessful logins are detected during a 15-minute window.

•	 Session windows group events by periods of activity. They don’t have fixed start or end
times and don’t overlap with other session windows. A session window closes after a
period of inactivity, during which it doesn’t receive any events. An example of session
windows is to represent user mouse activity, when there may be long periods of idle time
interspersed with high numbers of mouse clicks. If the idle time exceeds the inactivity
period, the current window is closed and the next mouse click opens a new window.

Event timestamping is critical in stream processing as it determines the order in which events are
processed and determines whether an event is still valid, particularly if it arrives late. If time windows
are used, timestamps determine the window into which events are assigned.

Key timestamp types are:

•	 Event generation – the time that the event occurred. This is assigned by the source system
that created or logged the event. Not all devices can create a timestamp and some that do
may not have a precise clock onboard. Analysis of the business case is required to
determine how to handle event generation timestamps and problems such as device clocks
that are out of sync. If the source can’t provide reliable timestamps, the stream processing
system needs to generate timestamps when it receives events.

Different tools offer different ways of setting watermarks. For example, Kafka Streams
provides two approaches:

•	 Continuous refinement, which enables outputs to be updated when late
events arrive

•	 Suppress operation with a configurable grace period

Continuous refinement has some disadvantages:

•	 Not all data sinks support updates to the outputs

•	 Some actions that were taken in response to outputs cannot be undone
(for example, sending an email)

•	 It makes memory management unpredictable as there’s no way of
knowing whether late events will arrive

 Go Green – watermarking

If the sensors on the vehicles rely on cellular connectivity, it’s possible
that some messages may be delayed if signal reception fails in some areas.
Onboard devices might buffer the messages and transmit them when
they can reconnect. Analysis is required to determine how to handle
late messages. A watermark can be configured to ensure that only late
messages that are still useful are processed. Any others that fall
outside this period will be discarded.

10www.consult.red

 Go Green – checkpointing

While a vehicle is travelling to its destination, the system has an open time window with several waypoints waiting to be sent to the map matching service. To avoid losing the states
held in memory if a computing node fails, checkpointing is used. At regular, configurable intervals, the processing engine persists the state and a pointer to the specific place in the
events stream.

This allows the system to recover to normal functioning of the pipeline after failure as the state is read from the persistent storage and processing is resumed from the appropriate
position in the stream.

Watermarking

Watermarking is a process for handling late events. A watermark is a time threshold that defines how long the system waits for late events. If a late event arrives before the watermark,
it is processed. If it arrives after the watermark, it is ignored.

P
R

O
C

E
S

S
IN

G
 T

IM
E

dr
op

pe
d

ev
en

t

proce
ssi

ng tim
e =

eve
nt ti

me

fix
ed am

ount o
f la

teness

EVENT TIME

Watermarking is a process for handling late events. A watermark is a time threshold
that defines how long the system waits for late events.

11www.consult.red

Stream processing with Apache Spark

Apache Spark is a high-speed, scalable, distributed processing system, capable of near
real-time performance. It supports Java, Scala, Python, R and SQL languages and runs in
most common cluster environments.

Spark uses micro-batching rather than event-based processing. The size of the batches
determines the response speed – the smaller the batch window, the faster the speed.

Considerations for using Spark:

•	 The processing overhead for managing batches increases as batch window size decreases.
A batch size of 50 milliseconds can deliver near real-time performance, but significant
processing power will be required to manage batches of this size.

•	 The batch window size is fixed and autoscaling can’t be used in response to data flow.
If the system can experience wide variations in traffic flow, system resources need to
be designed to cope with the processing power at the peaks, even if there will be
quiet periods when these resources aren’t required.

•	 A batch size of 2 seconds typically gives a reasonable balance between processing power
required for business logic and that required for batch management. If this latency is
acceptable, Spark may be a suitable tool to consider for a stream processing application.

 Tools and environments
Stream processing with Apache Flink

Apache Flink is a complete distributed streaming engine written in Scala and Java. It incorporates
a framework for creating data flow pipelines using different levels of abstraction:

•	 SQL – high-level language for analytics

•	 Table API – declarative domain-specific language (DSL)

•	 DataStream API – core APIs for stream and batch data processing (Java, Scala, Python)

•	 Stateful stream processing – low-level building block (Java, Scala)

Flink supports the following key requirements:

•	 Scalability – distributed system with horizontal scaling capability

•	 Fault tolerance – achieved with a checkpointing mechanism

•	 Speed – in-memory processing enables real-time performance

•	 Portability – runs in all common cluster environments

Stream processing with Hazelcast Jet

Hazelcast Jet is an in-memory, distributed stream processing engine written in Java and
with a Java API to build pipelines in a dataflow programming model. It models computations
as a network of tasks connected with one-way data pipes. The results of one task form the inputs to
the next task in the form of a directed acyclic graph (DAG).

Hazelcast Jet supports the following key requirements:

•	 Scalability – distributed system with horizontal scaling capability

•	 Fault tolerance – achieved by using repeatable/acknowledging sources with a combination
of distributed snapshots

•	 Speed – in-memory processing enables real-time performance

12www.consult.red

Stream processing with Kafka Streams

Kafka Streams is a library for building streaming applications, designed for writing applications to transform and enrich data in Apache Kafka. It offers a straightforward approach to writing
mission-critical, real-time applications and microservices while benefiting from Kafka’s server-side cluster technology. It requires a platform to run Kafka Stream applications.

The library can be used in Java or Scala applications. The applications don’t run inside the Kafka cluster, but they should be deployed as close as possible to the cluster to minimise the network
latency. Kafka Streams supports the following key requirements:

•	 Fault tolerance – achieved by Kafka topic persistence, an offset committing mechanism and RocksDB with checkpointing

•	 Scalability – Kafka event log is provided; the scalability of workers/microservices must be considered when designing the architecture of client applications

•	 Exactly-once processing is supported

•	 Order of events can be guaranteed within a single partition

Stream processing with Apache Beam

Apache Beam is not a distributed stream processing engine but a framework that provides a unified
programming model for Java, Python and Go. Applications built with Apache Beam can be executed
in many runtime environments including:

•	 Apache Flink

•	 Apache Spark

•	 Apache Samza

•	 Google Dataflow

Stream processing with Spring Cloud Data Flow

Spring Cloud Data Flow is a set of frameworks and tools that facilitates building and
deploying data pipelines that consist of Spring Boot applications:

•	 Long-lived applications can be implemented with the Spring Cloud Stream
microservice framework

•	 Short-lived applications can be implemented using the Spring Cloud
Task framework

Applications can be deployed to the Cloud Foundry platform or the cluster management
service Kubernetes. Spring Cloud Data Flow represents a different architectural
approach to the other platforms described in this section. Apache Flink and Google
Dataflow applications run on a dedicated engine cluster, which gives them a richer
environment for performing more complex calculations. This can be achieved with
Spring Cloud Data Flow by using Kafka Streams applications with Apache Kafka.

13www.consult.red

This section describes the stream processing services provided by cloud and third-party providers, highlighting the key features that they provide. The stream processing frameworks
described above can be hosted on almost any cloud infrastructure. However, using a ready-made stream processing service can be more expedient and offer greater flexibility by being
easier to scale as demand grows. It may also be lower cost, especially at low demand. Stream processing with AWS Kinesis Data Analytics.

Stream processing with AWS Kinesis Data Analytics

AWS Kinesis Data Analytics is a service providing a runtime environment for
Apache Flink Applications.

•	 No infrastructure/hardware provisioning – pure serverless solution

•	 Auto-scaling based on incoming traffic

•	 Costs are proportional to the processing power used

•	 Supports Java, Scala, Python and many well tested libraries for implementing
processing tasks

Stream processing with Google Dataflow Prime

Google Dataflow Prime is a fully managed stream processing service that provides a runtime
environment for Apache Beam Pipelines.

•	 No infrastructure/hardware provisioning – pure serverless solution

•	 Auto-scaling according to processing needs

•	 Costs are proportional to the processing power used

•	 Supports Java, Python, Go

Note: Google Dataflow Prime is not yet in General Availability

Stream processing with Azure Stream Analytics

Real-time analytics engine as service offered by Microsoft Azure.

•	 PaaS model – no hardware or infrastructure provisioning is required

•	 No autoscaling out-of-the box. Options are:

•	 Manual scaling

•	 Scaling based on schedule

•	 Configurable triggering for scaling based on selected input
data metrics

•	 Costs are proportional to allocated resources

•	 Provides SQL-like query language with some built-in functions and the possibility of
using JavaScript or C# UDFs. No general-purpose language support is available,
which limits use cases.

 Support from cloud and third-party providers

14www.consult.red

Table 2: Comparison of cloud provider and third-party stream processing products

AWS Kinesis Data Analytics Google DataFlow Prime Azure Stream Analytics Confluent Cloud

Environment
management/provisioning

No effort – pure serverless No effort – pure serverless
Dedicated cluster has to be provisioned
and managed

Kafka as a Service, processing
infrastructure must be considered
separately

Autoscaling No effort – full autoscaling No effort – full autoscaling

No autoscaling. Possible to configure
triggers (research on dependency
between input data metrics and
resources needed)

Kafka sized automatically, but processing
infrastructure must be considered
separately

Cost Proportional to usage Proportional to usage Proportional to allocated resources
Proportional to Kafka resources used,
but processing cost is not included

General purpose languages
supported for processing
logic

Java, Scala, Python Java, Python, Go No Java, Scala

Cloud providers supported AWS GCP Azure AWS, GCP, Azure

Comment
Meets all key requirements for stream
processing

Meets all key requirements for stream
processing but not yet in General
Availability

Not as advanced as AWS Kinesis and
Google DataFlow Prime, but sufficient
for analytical purposes if no complicated
logic requiring a general-purpose
language is required

Provides part of the solution but
a platform to host the processing
applications must be considered
separately

Stream processing with Confluent Cloud

Confluent Cloud is a fully managed Kafka service, accessible from AWS, Google Cloud and Microsoft Azure.

•	 No infrastructure to manage – Kafka as a Service

•	 Throughput based sizing for Kafka cluster, manual scaling ksqlDB with Confluent Streaming Units (CSU)

•	 Costs proportional to resources used for Kafka cluster, additional costs proportional to allocated resources when using ksqlDB

•	 ksqlDB or processors implemented with Kafka Streams API

Any complex stream processing which does not fit well into ksqlDB model requires external applications to be implemented. UDFs are not supported in Confluent
Cloud. Customised processors are deployed outside of Kafka clusters and their nature, management costs, and scaling must be considered separately.

15www.consult.red

Flexibility

Apache Beam provides a future-proof approach. Pipelines can be implemented
in Java, Python or Go and deployed in various runtime environments, including
Samza, Flink, Spark and Dataflow. Beam applications are portable. For example, if
the application was developed for deployment to AWS Kinesis Data Analytics with
Apache Flink runtime, it can later be easily migrated to Google Cloud Dataflow Prime.

Developing a solution using Kafka, Kafka Streams and Kubernetes as a cluster for
processing applications is more complex but can be deployed using cloud services
from AWS, Microsoft or Google.

Velocity

The time it takes to achieve results from a stream processing application
depends on the technology used. In complex cases where a query language
doesn’t meet the business logic requirements, AWS Kinesis Data Analytics
or Google Dataflow Prime would be the choice. Azure Stream Analytics doesn’t
support this requirement and the environment setup required for
application processing using Kafka Streams takes significant time.

 Choosing the right technology
With stream processing technology, there’s no one size fits all approach that works for all use cases. Some of the key factors that need to be considered are described below.

Existing technical stack and experience

•	 Streaming platforms support various languages. It makes sense to choose a platform with a language that your team is experienced in using. For example, if your team uses
Kafka, the choice of Kafka Streams might be the best fit.

•	 Cloud provider support is important.

•	 The use of Apache Beam to provide an abstraction layer is a sensible choice if you might move to a different runtime environment in the future.

Complexity of calculations

The first stream processing platforms used SQL tools to perform analytical tasks. This offered a better solution to real-time requirements than extract, transform, load (ETL) batch processing.
Over time, pipelines were introduced to provide even better performance for stream processing. Implementing pipelines requires a modern, general-purpose language, with support from
many proven libraries.

Currently Azure Stream Analytics only supports a Stream Analytics Query Language with a choice of built-in functions and the ability to extend them with User-Defined Functions (UDFs)
written in C# or JavaScript.

Infrastructure

Both AWS Kinesis and Google Dataflow Prime offer maintenance-free solutions. They have a true
serverless approach, with no infrastructure or hardware provisioning required. They both support
horizontal auto-scaling to provide more pipeline processing power when it’s needed with no
management intervention.

Azure Stream Analytics offers two ways to deploy a pipeline:

•	 Assign jobs to a processing unit

•	 Use a cluster as a single-tenant deployment for complex and demanding use cases

Azure does not support autoscaling. Scaling can be implemented manually by setting up a
schedule based on experience or by configuring custom triggers based on selected input
data metrics.

Confluent Cloud provides part of the solution with Kafka. Although it manages the service and
scales automatically, processing applications must be handled separately.

2022 Red Embedded Consulting Ltd. Consult Red is a trading name of Red Embedded Consulting Ltd. Please refer to https://consult.red/discover-red/ for more information. All rights reserved. This

publication has been prepared for general guidance on matters of interest only and does not constitute professional advice. You should not act upon the information contained in this publication without

obtaining specific professional advice. No representation or warranty (express or implied) is given as to the accuracy or completeness of the information contained in this publication, and, to the extent

permitted by law, Red Embedded Consulting Ltd does not accept or assume any liability, responsibility or duty of care for any consequences of you or anyone else acting, or refraining to act, in reliance

on the information contained in this publication or for any decision based on it.

stuart.griffin@consult.red

+44 (0) 7869 422 971

Stuart Griffin

rahul.mehra@consult.red

+44 (0) 7869 422 971

+44 (0) 1274 287 710

Rahul Mehra

kamil.krupa@consult.red

+48 696 656 492

Kamil Krupa

Contacts
For more information on streaming processing or to discuss your requirements get in touch with one of our experienced consultants.

	Button 23:
	Button 44:
	Button 49:
	Button 27:
	Button 32:
	Button 37:
	Button 24:
	Button 45:
	Button 46:
	Button 47:
	Button 48:
	Button 50:
	Button 51:
	Button 52:
	Button 53:
	Button 54:
	Button 28:
	Button 33:
	Button 38:
	Button 39:
	Button 40:
	Button 41:
	Button 42:
	Button 43:
	Button 34:
	Button 35:
	Button 36:
	Button 29:
	Button 30:
	Button 31:
	Button 25:
	Button 26:
	Button 22:
	Button 55:

